教科目名 発変電工学 (Engineering for Power Station and Substation)

学科名・学年 : 電気電子工学科 5年 (教育プログラム 第2学年 ○科目)

単位数など : 必修 1単位(前期1コマ,授業時間23.25時間)

担 当 教 員 : 駒澤 光, 江口 徹

授業の概要

各種エネルギーのうち、電力は現代社会を支えるエネルギーとして極めて重要なものである.この電力の発生、変換、輸送、消費及び運用(電力工学)に関しては、電気・機械関係の各種理論、生産技術が駆使されており、また従来からその時代の最新技術が導入されて来ている.本講義では、電力工学のうち電力系統構成・運用の概要を示すとともに、特に各種発電設備についてその設備構成と機能を学ぶ.また感電など安全についての知見に触れる

達成目標と評価方法 大分高専目標 (B2), JABEE 目標 (2.1①)

本校電子工学科は雷気主任技術者第2種認定校であり、「電力」科目相当の基礎及び応用力を習得する。 (定期試験)

4, 6 2 3 3 4 5, 7 5	1.電気 2.設位 3.電気 4.火ラ 5.水ラ	ポープ (2) 気エネルギーの供給(2) 力発電	内容 ○エネルギー資源と電力 ○電力供給システム ○電力技術と環境問題 ○発電所、変電所等の見学 (時期は、受入先都合・時間割など調整 のうえ) ○エネルギー変換と電力の調整 ○熱力学,ボイラー,タービン ○環境対策 ○発電原理,取水,運用方法 ○水車の種類 ○原子核と原子核反応	理解度の自己点検 【理解の度合い】 レポート有り
4, 6 2 2 3 3 4 5, 7 5	2.設价 3.電气 4.火力 5.水力	ボエネルギーの供給(2) 力発電 力発電	 ○電力供給システム ○電力技術と環境問題 ○発電所、変電所等の見学 (時期は、受入先都合・時間割など調整のうえ) ○エネルギー変換と電力の調整 ○熱力学,ボイラー,タービン ○環境対策 ○発電原理,取水,運用方法 ○水車の種類 	
2 3 4 5, 7 5	3. 電気 4. 火力 5. 水力 6. 原一	ボス・ 気エネルギーの供給(2) 力発電 力発電	(時期は、受入先都合・時間割など調整のうえ) ○エネルギー変換と電力の調整 ○熱力学,ボイラー,タービン ○環境対策 ○発電原理,取水,運用方法 ○水車の種類	レポート有り
3 4 5, 7 £	4.火ź 5.水ź 6.原 ⁻	力発電	○エネルギー変換と電力の調整○熱力学,ボイラー,タービン○環境対策○発電原理,取水,運用方法○水車の種類	
5, 7	5.水2	力発電	○熱力学,ボイラー,タービン○環境対策○発電原理,取水,運用方法○水車の種類	
	6.原-		○環境対策○発電原理,取水,運用方法○水車の種類	
8 6		子力発電	○水車の種類	
		T 刀光电	○原子核と原子核反応	
	前期中間		○原子炉の種類,安全対策 ○原子燃料サイクル	
9 前				【試験の点数】 点
10 育	前期中間	引試験の解答と解説		【理解の度合い】
11 7	7.新问	_い発電方式と分散型電源	○太陽光発電,風力発電,燃料電池,地 熱発電○コジェネレーション	
12 8	8. 送電	電・配電システム	○電力系統と送電方式○自家用受変電設備	
13, 14	9.変電	 	○役割と構成 ○主要設備	
15 育	 前期期ヲ	 卡試 験		【試験の点数】 点
自	前期期ラ	末試験の解答と解説		
履修上の	注意		教科書の解説のみでなく,実際の発電所, 介などを通して,発変電工学に関する基	【総合達成度】
教 科	書	高橋寛監修 福田務・相原良身 電気エネルギー オーム社	典・大島輝夫共著	
参考图	図書	丹波信昭 電力システム オー 林宗明・若林二郎 電力発生工 最新高級電験講座 水力発電所 電気書院		
自学上の	注意	受講前に予習を推奨		
関連科	科 目	電磁気学,電気回路,電気機器工学,電気法規, 電気計測,高電圧工学,送配電工学,電気設計		
総合評	评 価	達成目標について、2回の試験 総合評価=2回の定期試験の 総合評価が60点以上を合格とで 必要に応じて再試験を実施する	【総合評価】 点	