教科目名 応用物理Ⅱ (Applied Physics Ⅱ)

学科名・学年 : 都市・環境工学科 4年 (教育プログラム 第1学年 ◎科目) **単位数など** : 必修 2単位 (前期1コマ,後期1コマ,授業時間46.5時間)

担 当 教 員 : 藤本教寛

授業の概要

微分積分学を用いたニュートン力学を学ぶ. 1 年生で習った力学を, 2~3 年生で習得した微積分に基づいて一般的な形に組み直す. ニュートンの運動方程式の理解と解法を学び, 保存則がニュートンの運動方程式から導かれることを理解する. 多粒子系の運動も講義する. 最後に, 現代物理学の基礎として特殊相対性理論と量子力学の基礎を学ぶ.

達成目標と評価方法

大分高専目標(B1), JABEE 目標(c)(g)

- (1) 運動方程式を理解し、力学の典型的で簡単な演習問題を解くことができる. (定期試験)
- (2) 運動方程式から保存則を導くことができ、保存則を用いて問題を解くことができる. (定期試験)
- (3) 時間の遅れ,ローレンツ収縮,4元運動量など特殊相対性理論の基礎を理解し,簡単な問題が解ける.(定期試験)
- (4) 光の粒子性・波動性および物質の粒子性・波動性を理解し、簡単な計算問題が解ける. (定期試験)
- (5) 演習問題を通して理解を深めるとともに、継続的な学習ができるようにする. (課題)

<u> </u>		受業項目	内容	理解度の自己点検
	第1章	質点の運動と運動方程式	○最も簡単な質点の運動を考察することで、運	【理解の度合い】
1		質点と座標系	動方程式がどのように質点の運動を支配してい	
2	1.2	変位・速度・加速度	るかを理解する.	
3	1.3	ニュートンの運動の法則	○一定の力がはたらいているときの質点の運動	
4, 5	1.4	簡単な運動	を理解し、解くことができる.	
6, 7	1.5	単振動	○単振動に代表される単純で典型的な質点の運	
	第2章	エネルギーと仕事	動を解くことで、理解を深める.	
8	2.1	仕事	○エネルギーと仕事の概念を理解する.	
9	前期中	間試験		【試験の点数】
10	前期中	間試験の解答と解説	○問題をやり直すとともにより深く理解する.	【理解の度合い】
11		保存力と位置エネルギー	○エネルギー保存則を用いて力学の問題を解く	
12		運動エネルギー	ことができる.	
13		力学的エネルギー保存則		
0		運動量と衝突	○運動量や力積を理解する.	
14		運動量と力積	○運動量保存を理解し、応用して問題を解く.	
		運動量保存		
15	前期期			【試験の点数】
		末試験の解答と解説		
16		質点系の運動	○多粒子系の運動方程式について理解する.	【理解の度合い】
		質点と質点系の回転運動	○力のモーメントと角運動量について理解し、	
17		力のモーメント	角運動量保存則と中心力について理解を深め	
18		角運動量	5.	
19		回転運動の方程式	○質点の回転を、回転の運動方程式を使って記	
0.0		剛体の運動	述できることを理解する.	
20		剛体のつりあい	○剛体のつりあい状態を調べ、理解する.	
21, 22		慣性モーメント	○慣性モーメントを理解し、計算する.	V⇒NEA ∞ H.W. V
23	後期中		○田時とめいまよししましたい河ノ四和よフ	【試験の点数】
24		間試験の解答と解説	○問題をやり直すとともにより深く理解する.	【理解の度合い】
0.5		現代物理学	○慣性系によって、時間の進み方や物の長さが	
25 26		時間の遅れと長さの縮れ 4元運動量	異なることを理解する. ○エネルギーと運動量が 4 次元ベクトルとして	
26		光の粒子性	統一されることを理解する.	
28		物質の波動性		
28		原子の構造	○ 元に程丁性があることを理解する。○ 物質波に現れる波動性について理解する。	
49	υ. υ	<i>까</i> 、1 V/1骨/坦	○70月収15元45分収到1115 717 (42)件りる.	
30	後期期	未試験		【試験の点数】
	後期期	 末試験の解答と解説		
履修上の注意		一部に高度な内容を含むため、必ず復習し、課題への取り組みを行うこと. 微積分学が必須となるので、これらの科目を復習すること.		【総合達成度】
教 私	教科書原康夫、「第5版物理学基礎」			
†	図書 柴田・勝山 他,「初歩から学ぶ基礎物理学 力学 II」, 大日本図書			
自学上の注意		わからないところはメールを活用し、随時質問して解消をすること.		
関 連				
総合	評価	達成目標の(1)~(4)につい 総合評価= (4回の定期試験 総合評価 60点以上を合格と 実施する. 受験資格は総合の	【総合評価】 点	
	!			2