教科目名 電子物性 (Solid State Physics)

専攻名・学年 : 電気電子情報工学専攻 1年 (教育プログラム 第3学年 ○科目)

単位数など: 選択 2単位 (後期1コマ,授業時間23.25時間)

担 当 教 員 : 田中大輔

授業の概要

電子材料が示す種々の性質には、材料内での電子の振る舞いが大きな役割を果たしている。電子材料の新規開発や改良及びこれらの材料を用いた電子デバイスの動作の理解には、この材料内での電子の振る舞いの理解が必要不可欠である。本教科では、電子状態を記述するシュレディンガー方程式、固体のバンド理論、固体中の電子伝導等について学び、種々の電子物性を理解するための基礎知識を得る。

達成目標と評価方法

大分高専目標(E1), JABEE 目標(d2a)

- (1) 電子のエネルギーの取り扱いについて理解する. (課題/定期試験)
- (2) シュレディンガー方程式について理解する. (課題/定期試験)
- (3) 固体内のキャリア密度、電子の散乱機構を学び、金属及び半導体の電子伝導を理解する. (課題/定期試験)
- (4) 物質の誘電的性質,光学的性質,磁気的性質を理解する. (課題/定期試験)

	授 業 項 目		内容		理解度の自己点検	
1	電子の電荷	庁とエネルギー	0	電気素量等について復習するととも	【理解の度合い】	
				に、クーロンブロッケード現象につ		
	41.			いて学ぶ.		
2	熱エネルキ		0	熱エネルギー、分配則、ボルツマン		
3	 電子に働く	力心海動	0	因子等について学ぶ. 真空中の電子について考え,空間電		
3	電子に働く	、月と連動		荷制限電流等について考え、空间電		
4	固休中の電	『子の運動(1)	0	固体中の電子の運動について古典力		
1	DIT 1 VA			学的に取扱い、ドリフトや拡散につ		
				いて学ぶ.		
5	原子核に東	 (1)	0	水素原子モデルをもとに束縛された		
				電子について学ぶとともに、量子力		
6	原子核に束縛された電子(2)			学のための基礎を身につける.		
) , , , , , , , , , , , , , , , , , , ,					
7	シュレディ	·ンガー方程式(1)		シュレディンガー方程式を導出し、		
8	シュレディンガー方程式(2)			井戸型ポテンシャルを理解する.		
8	ンユレノインル―ガ性环(2)					
9	電子のトン	/ネル効果		有限厚さのポテンシャル障壁に関す		
		17.793210		る波動方程式を解き、トンネル効果		
				について学ぶ.		
10	結晶構造と	: 格子振動	0	固体の結合力,理想結晶の構造結晶		
				の不完全性を理解する. 格子振動に		
				ついて学ぶ.		
11	物質の誘電	這的性質	0	局所電界の概念から分極機構を理解		
	IV 55 m 1/2	A.A.L. (1) 1515 (2)		し、周波数依存性を考察する.		
12	物質の光学	华的性質(1)	0	光子の性質を理解し、光の放出と吸		
13	施研办业学的研研(g)			収の過程を理解し、エレクトロルミネセンス等の原理を理解する.		
13	物質の光学的性質(2)			磁気的物理量について量子力学的取		
14	物質の磁気的性質			扱いを理解し磁性の性質について学		
11	NA - MANUALLA			S.		
15	後期期末試験				【試験の点数】	点
	後期期末詞	弌験の解答と解説				
履修上の注意 講義は教科書を基本に進めるが、教科書を補うためにプリントを配付						
するので、各自ファイリングをしておくこと.				【炒入法产库】		
教	科 書	奥村次徳「電子物性工学」,	電子	情報通信学会(コロナ社)	【総合達成度】	
4	大場勇治郎、池崎和男 他、「電子物性基礎」、電気学会(オーム社)					
参	考 図 書	青木昌治,「電子物性工学」		= -		
	本科で学修した電子工学、電気材料、量子力学が基		r料,量子力学が基礎となるので.			
自学上の注意 事前に良く復習をしておく。						
	電乙丁学 (D 利) 電气材料 (D 利) 具7.40学 (D 利) 電磁气管 III (
関	連 科 目 電子工学 (E 科), 電気材料 (E 科), 量子力学 (E 科), 電磁気学Ⅲ (S 科), 機能材料工学 (S 科), インテリジェントマテリアル (専攻科)					
		達成目標の(1)~(4)について定期試験と課題で評価する. 総合評価=定期試験成績×0.7+課題レポート評価の平均×0.3			1 40	⊢
総	合評 価	■ 総合評価が 60 点以上を合格とする.			【総合評価】	点
				る. −トをすべて提出した者に与える.		
		コピッグペンスが見口は、 味趣	- 41	」と) 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、		