教科目名 非線形システム (Nonlinear Systems)

専攻名・学年 : 電気電子情報工学専攻 1年 (教育プログラム 第3学年 ○科目)

単位数など: 選択 2単位 (後期1コマ,授業時間23.25時間)

担 当 教 員 : 辻 繁樹

授業の概要

生物学、経済学、医学といった様々な分野で生じている問題を解決する上で「数学」が重要な役割を果たしている.これまで数学系科目では、線形システムについて学習してきたが、上記の分野で研究の対象となるシステムの多くは「非線形」常微分方程式で表されることが多い.本科目では、それら非線形システムについて学ぶ前に、まず、現実のシステムを対象として作られた「線形」常微分方程式で記述される様々な数理モデルを通して、モデルの構築方法、解析方法、及び解析結果の意味付けについて学び、解析のサイクルについて理解していく.

次に,本題である非線形差分方程式,非線形常微分方程式で記述される幾つかの非線形数理モデルを通して,解の安定性や分岐現象について理解を深める.また,関連する解析手法についても学ぶ.

達成目標と評価方法

大分高専目標(E1), JABEE 目標(d2a)

- (1) 解析の対象となるシステムで生じている現象や計測データをもとに基本的な数理モデルを構築し、解析的に解を導くことができる. (定期試験、課題演習)
- (2)解析で得られた結果の意味づけを行い、実システムとマッチするかどうか検証し、必要であればモデルを改良することができる。(定期試験、課題演習)
- (3) 非線形システムの解の安定性,及び分岐パラメータを求めることができる.(定期試験,課題演習)
- (4)得られたシステムの分岐構造をもとにそのシステムの性質を説明することができる. (定期試験,課題演習)

		受 業	項	目	内 容	理解度の自己	点検
1 2-4	○線形システムの数理モデル・イントロダクション ・「成長と減衰」の数理モデル ・変数分離形微分方程式で記述される数理モデル				○「人口問題」を例に数学モデルの作り方, モデル化のための枠組みについて学び,課 題演習に取り組む. ○「人工腎臓器の数学モデル」,「ロケット の飛行」,「広告に対する売上の反応」,「美 術品の贋作」,「電気回路」等を例に,各種 微分方程は思ります。	【理解の度合い】	
5-7 8-11	る数型 ○非総 •非線	世モデル R形システ 形差分方	ムの数3 程式にお	おける解の	法、解析結果の意味づけについて学び、課題演習に取り組む. ○非線形差分方程式・微分方程式にみられ		
12-14	非線	安定性と局所分岐について ・非線形微分方程式における解の 安定性と局所的分岐について			る解やその安定性について学ぶ、また、各系にみられる各種分岐現象とそれら分岐が生じるパラメータ値の導出方法についても学び、課題演習に取り組む.		
15		用末試験 用末試験の	解答と	·		【試験の点数】	点
本科目では、 履修上の注意				が常微分方程 ことを前提 こと. 必要な	量式の解析が行えること、基本的なプログラ としているため、受講前にこれらについて理 よ数値計算方法については、適宜説明を行う.		
教 科 参 考 🗵	書図書	デヴィッド・バージェス/モラグ・ボリー, 「微分方程式で数学モデルを作ろう」,日本評論社 佐藤總夫,「自然の数理と社会の数理1」,日本評論社				【総合達成度】	
自学上の	システムを理解するためにはくだけではなく、状態の挙動 ため適宜、解析プログラム等 可視化し、理解の助けとする						
関連和),システム制御理論 (専攻科),生体情報工専攻科),制御工学 I,II (E科),数値解析	【総合評価】	点
総合言	達成目標の(1)~(4)について定期試験と課題演習で評価する. 総合評価=(定期試験)×0.6+(演習レポートの評価の平均)×0.4. 総合評価が60点以上を合格とする.また,再試験は実施しない.						