教科目名 情報数学Ⅱ (Information Mathematics Ⅱ)

学科名・学年 : 制御情報工学科 5年 (教育プログラム 第2学年 ○科目)

単位数など: 選択 1単位 (後期1コマ,授業時間23.25時間)

担 当 教 員 : 徳尾健司

授業の概要

情報系技術者の素養として求められる専門的な数学を学ぶ. 後期のIIでは、前期のI(必修)で修得した集合、関係、関数および帰納法、再帰の知識をもとに、離散数学的概念である組合せ論、確率論、木構造および数学を記述するための"文法"としての命題論理、量化論理について講じる.

達成目標と評価方法

大分高専目標(B1), JABEE 目標(c)(g)

- (1) 離散数学的概念である組合せ論、確率論、木構造について理解できる. (定期試験と小テスト)
- (2) 数学を記述するための"文法"としての命題論理、量化論理について理解できる. (定期試験と小テスト)
- (3) 演習問題を通じて継続的な学習ができる. (小テスト)

(3)	授目的歷史	業項目	内 容	 理解度の自己点検
1 - 2	組合せ論(2つの基本原理:加法と乗法/2つの基本原理を一緒に用いること/n個からk個を選ぶ4つの方法/順列と組合せ/重複する順列と組合せ/			【理解の度合い】
3 - 5	いくつかの /Simpson の	有限確率空間/哲学と応用/ D単純な問題/条件付き確率 のパラドックス/独立/Bayes 率変数と期待値)	○離散数学的概念である確率論について 理解する.	
6 - 7	木構造 (はじめての木/根付き木/ラ ベル付き木/括弧無しの記法/2 分探索 木/根無し木)		○離散数学的概念である木構造について 理解する.	
8 9 - 11	命題論理 的特徴/真 ジー性/正	t験 大験の解答と解説 (論理とは何か/結論の構造 理関数的結合子/トートロ 規形,最小文字集合,最大 生/意味論的分解木/自然演	○数学を記述するための"文法"としての 命題論理について理解する.	【試験の点数】 点 【理解の度合い】
12 - 14	本的な論理	(量化の言語/いくつかの基理的同値/量化論理の意味論結/量化を伴う自然演繹)	○数学を記述するための"文法"としての量化論理について理解する.各内容について,毎回授業の最後に小テストを行い理解度を確認する.	【試験の点数】 点
		ヾ゚゚゚゚゚		「中へのスマンハバダベー」
履修上の注意				
教	科 書 プリントを配布する.		7 (0, 0 , 0, 0, 1, 7	
参	考 図 書 Makinson, D., Sets, Logic and Maths for Computing, Springer.			【総合達成度】
自学上の注意 図書館にある参考図書を用いて予習・復習を行うこと.				
関	連 科 目 論理数学,応用数学 I ,情報理論,情報数学 I ,数理論理学(専攻科)			
総	達成目標の(1)~(3)について,2回の定期試験と授業時の小テストで評価する.総合評価60点以上を合格とする. 総合評価 = (定期試験の平均)×0.7 + (小テストの平均)×0.3 再試験は年度末の再試験期間に実施する.受験資格者については試験解説時にアナウンスする.			【総合評価】 点