教科目名 材料と加工 (Materials and Processing)

学科名・学年 : 機械工学科 1年

単位数など: 必修 1単位 (後期1コマ,学習保証時間22.5時間)

担 当 教 員 : 松本佳久

授業の概要

生産技術の柱となる材料工学や機械工作(加工学)は、もの作りの基本となる学問である。この教科ではこれらの基礎としての工作機械原理、加工理論、機械材料等の概要について学ぶ。また、機械工学の導入教育の一つとして、機械実習等の実技に関連づけた説明を心掛け、分かりやすい講義を行うことで、生産技術の広範な問題の解決法を養う。

達成目標と評価方法 大分高専目標 (B2)

- (1) 製鉄法や製鋼法, 状態図の基礎, 材料の性質などを理解する. (定期試験と課題)
- (2) 機械を構成する材料の名前とその製造方法を理解する. (定期試験と課題)
- (3) 材料とその性質を利用した基本的な加工法を知っている. (定期試験と課題)
- (4) 塑性加工の原理や、その特徴について理解する. (定期試験と課題)
- (5)課題を通して材料と加工に関する知識を増やすとともに、継続的な学習ができる. (課題)

				ご増やすとともに、継続的な学習ができる.(↓	
□	授	業項	目	内 容	理解度の自己点検
	1. 機械を	·作ス		○我々の生活を支える機械の仕組と用い	【理解の度合い】
1		:機械の製作過	程	られる材料、機械の製作過程の概要につい	
1	が旧で成成り表目過程			て学ぶ。	
	2. 材料を	・作ろ		○鉄鋼材料と非鉄金属材料の違いを製	
2	(1)鉄鋼材料と非鉄金属材料			鉄・製鋼、製錬などの製造過程を通して学	
3	(2)結晶質と非晶質			ぶ. また, アルミナやガラス, プラスチッ	
3		子化合物		クなどが資源からどのようにして作られ	
				るかを学ぶ。	
	3. 材料とその性質(1)			○機械を構成する材料の種類およびその	
4	(1)引張試験と硬さ試験			材料の機械的性質をどのように理解すれ	
5	(2) 靱性			ば良いかを学ぶ。	
		: その性質 (2))	○様々な装置・部品材料の熱的・電気的特	
5	(1)電気抵抗			性をその材料が有する物性の特徴と結び	
6		張と熱伝導		つけて理解する.	
	5. 素形材を作る(1)			○鋼の厚板・薄板を取り上げ、その製造方	
7		薄板の製造方	法	法についての基本的な原理と技術的な特	
				徴を学ぶ.	
8	後期中間討	 t験			【試験の点数】 点
9	後期中間試験の解答と解説			○理解度の確認,分からなかった点の理解	【理解の度合い】
	6. 素形材を作る(2)			○基本的な圧延理論と材料の異方性を理	
9	(1)圧延作用力			解する. また, 各種棒材や線材の製造方法	
10	(2)押出し,マンドレル,引抜き			や材料の組織変化との関係を学ぶ.	
	7. 鍛造			○機械的性質向上に有効な加工法と温度,	
11	• 再結晶,転造			熱処理法を学ぶ.	
	8. 粉末成形			○高温での原子拡散による焼結を用いた	
12	・焼結原理			製品加工法を学ぶ.	
	9. 板の成形加工			○板材の塑性変形能を利用した各種加工	
12	(1)せん断加工時の作用力			法(せん断,曲げ,絞り)について,力の	
13	(2)スプリングバック理論			加わり方や変形特性を交えて学ぶ. また材	
13	(3)曲げ,絞り加工			料特性と加工性の関係を理解する.	
		電子・化学反応		○電気や化学のエネルギーを利用して材	
14		ザ加工と放電加	1工	料を加工したり、表面の物理的性質や化学	
14	(2)めつ	きと塗装		的性質が改善できることを学ぶ.	
15	後期期末討	 :験			【試験の点数】 点
		(験の解答と解	 説		
尼丛				- モノ」の作り方に対していつも疑問を抱き,	【総合達成度】
履修上の注意 さらに最近の材料や加工に			材料や加工に	関する話題なども敏感に感じとること.	
教	科 書 吉川昌範ほか著,「新機械工			工作」,実教出版.	
参	考 図 書 参考資料プリント配布.				
関	連科目	機械工作法 I	,機械工作法	Ⅱ,材料学Ⅰ,材料学Ⅱ	
	達成目標の(1)~(5)について2			て2回の試験と課題で評価する.	
400	A == /			朝試験の平均) +0.2×(課題点)	
総	合 評 価			各とする. 再試験の受験資格は, 課題を全て	
		提出した者に			【総合評価】 点
					*** H F 1 Im #

平成 21 年度 (2009 年度)

- -