教科目名 微分積分Ⅱ (Differential & Integral Calculus Ⅱ)

学科名•学年 : 全学科 3年

単位数など : 必修 4単位 (前期2コマ,後期2コマ,学習保証時間90時間) 担 当 教 員 : 高妻倫太郎(3M) 東木雅彦(3E) 瀧川信正(3S) 武口博文(3C)

授業の概要

微分積分 I では、1変数の基本的な関数の微積分を学んだ、微分積分 II では、それらを基礎にして、積分のいろいろな応用、関数の級数展開及び2変数関数の微積分すなわち偏微分・重積分とその応用(極値問題、曲面積など)を学ぶ、

達成目標と評価方法 **大分高専目標(B1)**

- (1) 1変数関数の積分を使って、面積・長さ・体積及び位置・速度などが求められる. (定期試験と課題)
- (2)2変数関数の微積分を学ぶことにより、微積分がより深く理解できる.(定期試験と課題)
- (3)2変数関数の微積分の計算と応用ができる. (定期試験と課題)

(3) 2		7)	内 容	理解度の自己点検
		文 	○基本的な図形の計量(面積,曲線の長さ,	【理解の度合い】
1-3		図形の面積、曲線の長さ	回転体の体積、回転面の面積など)を定積	(全所*/)及日**】
4, 5		立体の体積	分を使って求められる.	
6, 7		回転面の面積	□ ○媒介変数表示や極座標の図形について、	
8, 9		演習I	面積、曲線の長さ、回転体の体積、回転面	
		関ロ1 媒介変数表示による図形	の面積が定積分を使って求められる.	
10, 11		無用を数表がによる図形 曲座標による図形	○変化率と積分の関係を学び、速度・加速	
12, 13		変化率と積分	度などへの応用ができる.	
14			度なとへの応用ができる。	T - base
15		間試験		【試験の点数】 点
16		間試験の解答と解説	○広義積分の定義を理解し,積分の概念を	【理解の度合い】
17		広義積分	広げる.	
18, 19		演習Ⅱ	○関数は多項式で近似できることを理解	
		数の展開	し、実際に近似式を作ることができる.	
20-23		多項式による近似	○数列の極限,級数の和の収束・発散が理	
24, 25		数列の極限,級数	解できる.	
26, 27		マクローリン展開	○関数のマクローリン展開ができ, オイラ	
28, 29		2.5 オイラーの公式, 演習Ⅲ	一の公式が理解できる.	
30		末試験		【試験の点数】 点
		末試験の解答と解説		
	3. 偏		○多変数関数の微分の概念を理解し, 偏導	【理解の度合い】
31-33	3.1	2 変数関数,偏導関数	関数が求められる.	
34, 35		接平面, 合成関数の微分法	○接平面の方程式が求められ, 合成関数の	
36	3. 3	演習IV	微分ができる.	
37-38	3.4	高次偏導関数	○高次偏導関数が求められ,2変数関数が	
39, 40	0 3.5	極大•極小	多項式で近似できる.	
41, 42	2 3.6	陰関数の微分法	○2変数関数の極値が求められる.	
43	3. 7	条件つき極値問題	○陰関数の微分法を理解し,条件つき極値	
44	3.8	演習V	が求められる.	
45	後期中	間試験		【試験の点数】 点
46	後期中	間試験の解答と解説	○2重積分の定義を理解し、2重積分を累	【理解の度合い】
	4. 重	積分	次積分に直して計算でき,積分順序の交換	
47-49	9 4.1	2 重積分の定義, 計算	ができる.	
50, 5	1 4.2	演習VI	○座標変換(極座標を含む)について,2	
52, 53		曲座標による2重積分	重積分の変数変換ができる.	
54, 55		変数変換, 広義積分	○2重積分を利用して、体積、曲面積など	
56-59		2 重積分の応用, 演習Ⅷ	が求められる.	
60				【試験の点数】 点
		末試験の解答と解説		
FF 1/4			. 特に復習に時間を十分にかけること. 問題	TWO A SE SEE
復修.	上の注意	を指名された人は、次回の授業前に黒板に板書しておくこと.		【総合達成度】
ועב	T.1 -		積分 I 」,「新訂 微分積分 II 」,大日本図書.	
教	科 書		分積分Ⅰ,Ⅱ問題集」,大日本図書.	
参考	·····································	微分積分学の参考書	× 10/2 - 1	
関連		微分積分 I ,微分方程式,		
	= 17 🗖			
			マイイ 回の試験と課題で評価する.総合評価=	
総合	計 価		試験20%+課題20%)とする. なお出席状のパカト間に、アンドラス また 学年末の終	
			0%を上限として減点する.また,学年末の総	【総合評価】 点
		台成額か40点未満の場合	、再試の受験資格はないものとする.	