教科目名 電気設計 (Design for Electrical Engineering)

学科名・学年 : 電気電子工学科 5年 (教育プログラム 第2学年 科目)

単 位 数 な ど : 選択 1単位 (前期1コマ,学習保証時間22.5時間)

担 当 教 員 : 大石隼人

授業の概要

3, 4 年次に学んだ電気機器工学に関する理解を深めながら,電気機器設計の基礎原理について学ぶ.また誘導電動機の設計を実際に行う.

達成目標と評価方法 (名) 原気機器の構造を開始できる。(京期試験)

- 大分高専目標 (D1), JABEE 目標 (d1)(g)
- (1) 電気機器工学で学んだ電気機器の構造を理解できる.(定期試験)
- (2) 設計における磁気装荷および電気装荷の重要性を理解できる.(定期試験)
- (3) 設計の基本方針と最近の電気機器設計の傾向を把握できる.(設計書、定期試験)
- (4) 誘導電動機の設計手順を理解できる . (設計書、定期試験)

(+)		」機の設計手順を理解できる.		田知度の白コ上校
回	括	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	内容	理解度の自己点検
		気機器の本質とその内容	電気機器の寸法変化に伴う容量,損失の評価法の基準を表現の対象を表現しています。	【理解の度合い】
1		電気機器の寸法と容量の関	礎を理解する.また,機器の大型化おいては温度上	
		係、	昇が重要な要素となることを知る.	
1		電気機器の損失、		
2	1	絶縁の種類と温度上昇限度		
		記機器設計の基礎原理 記機器設計の基礎原理	簡単な例によって設計の基本概念をつかみ,磁気装	
3		二つの基本的な計算問題	荷および電気装荷の設定が機器の性能を決定する	
4		電気機器の容量を表す一般	ことを理解する.電気機器の設計の共通的な方法と	
		式	して微増加比例法を学び ,装荷の比の分配法につい	
4	2.3	鉄機械と銅機械	て最近の機器おける設定の動向を知る.	
5		完全相似性にある機器		
5		不完全相似性にある機器		
6		微増加比例法の理論		
6		微増加比例法の実際		
7		装荷の計算法と最近の機器		
		の基準装荷 , 装荷分配定数		
	3. 巻線	閖形三相誘導電動機の設計	実験室規模の誘導電動機の設計を実際に行うこと	
			によって設計手順の詳細を知る.	
8	前期中間	引試験		【試験の点数】 点
9	前期中間	引試験の解答と解説		【理解の度合い】
	3 . 巻約	泉形三相誘導電動機の設計	装荷の分配	
10			固定子スロット	
11			ギャップの長さ	
12			回転子鉄心	
13			漏れリアクタンス	
14			励磁電流と鉄損	
15	前期末記	式馬 ¢		【試験の点数】 点
		武験の解答と解説		
	[
	[
履修上の注意		設計時には毎回15条が進んだところの確認を行う。火席寺で設計15条が進れた場合には自習して取り戻しておくこと、電卓は毎回持参すること。		
≯ h				【総合達成度】
参	参 考 図 書 なし.設計に必要な電線表		などの参考資料は授業中に与える.	
		工学実験 , 工学実験 , 電	電気計測,電子回路設計,電気機器工学 ,電気機器	
(第)	関連科目 工学			
	達成目標の(1)~(4)について		2 回の試験および設計書で評価する.	
	, , , , ,		2 目の	
松			ま、設計書提出状況の他に協調性,積極性,グループ統	
iiviei [ы пт іш	本力,質問内容も含む.詳細		【総合評価】 点
総合評価 60 点以上を合格とする .				