教科目名 電気機器工学 (Electric Machinery & Apparatus) 電気電子工学科 4年 (教育プログラム 第1学年 科目) 必修 2単位 (前期1コマ,後期1コマ,学習保証時間45時間) 学科名・学年 単位数など 担当教官

______ 智 行 後藤

授業の概要 3年生次の電気機器工学 に引き続き,特に産業界で多く用いられている交流機器について学ぶ.この講座では発電機や,電動機の動作原理やその特性について学ぶ.特に3年生次に学んだ直流機器から前述したように,実社会での利用が多い交流機器について,実際に産業界で多く用いられている誘導機と同期機について,その運転原理はもとより産業界での位置付け等も学ぶ.時間的に余裕が出来れば,交流と直流とのエネルギーの相互変換の為のコンバータやインバータ等の基礎も学ぶ.

達成目標との評価方法 **腰との評価方法** 大分高専目標(B2),JABEE目標(d(1))(誘導器産業界で多く用いられている機器だけに,その動作原理,構造,特性等をよ 理解し,等価回路等から電圧・電流・トルク特性等が算出出来ること、(定期試験 (1) 誘導器産業界 (定期試験)

- (2)実際の産業界において使われている応用事例の理解が出来,将来より発展的に応用す 能な理解力を修得すること・・・・・(定期試験) (3)木校は第2種需気ま任技術者の認定校になっているので、そのレベルの問題解決が出

(3)本校は第2種電気主任技術者の認	定校になっているので,そのし	ノベルの問題解決が出 (定期試験)
来る能力を養うこと. 回 授 業 項 目	内容	
第 5 章 . 誘導機	○無道霊動機の原理と問発	【理解の度合い】
1 5.1 誘導電動機の原理	○ 誘 導 電 動 機 の 原 理 と 開 発 の 歴 史 , 回 転 磁 界 の 発 生	
2 5.2 誘導電動機の構造	○誘導誘導機の種類,巻線	
 3,4 5.3 固定子巻線と起磁力	形・籠形誘導電動機 〇集中巻・分布巻・分布短	
13,4 3.3 固定于各級已起城力	節の場合の起磁力等	
5~7 5.4 多相誘導電動機の理論と等	○ 二次誘導起電力・二次電	
価回路 8 前期中間試験	流・等価回路・特性等	【試験の点数】 点
9 前期中間試験の解答と解説		【理解の度合い】
5.5 多相誘導電動機の特性	〇速度・出力・力率・効率 比例推移等	
10~ 5.6 多相誘導電動機の運転	日の独を守るとのをを持ちます。	
12	・逆 転 ・速 度 制 御 法 等	
13 5.7 単相誘導電動機	単相誘導電動機の原理と 特性等について	
14 5.8 特殊誘導機	○ 誘 導 発 電 機 ・ 二 相 サ ー ボ	
4.5 + +0 +0 +- ++ ++ FA	モータ等	
15 前期期末試験 前期期末試験の解答と解説		【試験の点数】 点
16 ~ 5.9 誘導電動機の円線図	○誘導電動機の円線図につ	【理解の度合い】
17	いて	
第 4章 . 同期機 18 4 . 1 同期発電機の原理	○交流起電力の発生・極数 と回転数と周波数の関係	
	○集中巻・分布巻・短節巻	
19 4.2 電機子巻線と誘導起電力	・分布短節巻の起電力 〇水車・タービン・エンジ	
20 4.3 同期発電機の構造	ン発電機	
	○電機子反作用・ベクトル	
21 ~ 4 . 4 同期発電機の特性 22	図・負荷角・特性曲線・電 上変動率等	
23 後期中間試験		【試験の点数】 点
24 後期中間試験の解答と解説 4.5 同期機の励磁方式	○直流・ブラシレス・整流	【理解の度合い】
4.5 问期饿奶咖圾刀式		
25~ 4.6 同期発電機の並行運転	並行運転の必要性・同期	
26 27~ 4.7 同期電動機の特性	化・負荷分担等 同期電動機の原理・特性	
29 4.8 同期電動機の運転	○同期電動機の始動法・乱	
	調・安定度等	
30 後期期末試験 後期期末試験の解答と解説		【試験の点数】 点
本講座の内容は,多くの関	連分野があるので,本講座	【総合達成度】
履修上の注意 の個々の内容の理解に止ま	₹るのでなく,出来るだけ他 │	
<u>分野との関連についての視</u> 教科書野中作太郎,電気機器(<u> </u>	
参考 図書 坪島茂彦,図解誘導電動機		
他参考図書多数		
関連科目 電気機器工学 ,パワーエレクトロニクス,制御工学 , 発変電工学,送配電工学,高電圧工学,電気応用,電気設		
計,システム工学,電気法規		
総合評価 達成目標(1)~(3)に		
と課題レポートで評価する総合評価 = (4回の定期記). 【験の単純平均)×0.7	
+ 課題レポート×0.3	総合評価が60点以上を合格と	F 10 A += 1=
する。 なお,原則として	☑,再試験は行わない.	【総合評価験】 点