教科目名 ディジタル回路 (Digital Circuits)

学科名・学年 : 電気電子工学科 4年 (教育プログラム 第1学年 科目)

単 位 数 な ど : 必修 1単位 (前期1コマ,学習保証時間22.5時間)

担 当 教 員 : 清武博文

授業の概要

3年生で学んだディジタル回路 を基礎にして,状態遷移を使った順序回路の設計,電子ルーレットを設計する演習や,ディジタル・アナログ変換,さらにディジタル回路のノイズ対策について学ぶ。

達成目標と評価方法

大分高専目標 (B2), JABEE 目標(c)(d1)(g)

- (1) これまでに学んだディジタル回路 に関する総合的な復習をかねて電子ルーレットの設計をできるようになる (設計演習).
- (2) パソコンや端末機,計測器,ゲーム機に応用される各種メモリ回路について理解する(定期試験).
- (3) ディジタル・アナログ変換を理解する(定期試験).
- (4) 高速で動作するディジタル回路への導入として,簡単なノイズ対策を理解する(定期試験).

		授業項目	内容	
□		授 業 項 目	<u></u>	理解度の自己点検
1-4		フリップフロップとその応用	カウンタと順序回路について理解	【理解の度合い】
		カウンタ	し,状態遷移図を使った順序回路の	
		状態遷移図と状態遷移表	設計法を学ぶ.	
	3.8	状態遷移表による順序回路の		
		設計		
5-7	設計演	さい とうしゅ とうしゅ とうしゅ とうしゅ とうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こ	与えられた電子ルーレットの仕様か	
			ら,今まで学んだ知識を総動員して	
	36 HD		設計を行う .	TARRA CALLARY
8	前期中			【試験の点数】 点
9		間試験の解答と解説	 	【理解の度合い】
	<i>, ,</i> , , , , , , , , , , , , , , , , ,	グ - デジタル変換の基礎	標本化と折り返し雑音,量子化と量 子化雑音,変換用コード,さらに誤	
10-11	A/D 変技	商	大化粧首、変換用コート、さらに鉄 差に関する基礎的事項を学ぶ。	
10-11		ஜ クヲッシュ形	左に関する基礎的事項を学が。 さらに , 代表的な 4 つの方式につい	
		となった。 E次比較形	て理解する。	
		5分形	C ZMT / O o	
		オーバーサンプリング・変調形		
	D/A 変技			
12-13		ベイナリ・ウェイト電流源形		
	2 R	-2R ラダー形		
	3 積	5 分形		
		トーバーサンプリング・ 変調形		
		ディジタル回路のノイズ対策		
		ノイズの種類		
14		ノイズマージン	ノイズの種類や対策設計法,障害が	
		ノイズ発生,侵入の対策	発生した時の対策法の概要を学ぶ。	
	7.4	ノイズの規格と規制		
15	前期期	未試験		【試験の点数】 点
	前期期	末試験の解答と解説		
講義中はこまめに質問を投げかける.間違ってもいいから、各自自分の頭				
で考え、答えを出して欲しい、講義中の説明でわからないところがあった			【総合達成度】	
59く質問9ること、参考資料をたくさん配る事定であるので、整理整頓				
+	- -	を日頃から心掛けること.	#3000 L + *1	
教科		谷本正幸「インターユニバーシティ	ィ 電子回路 B」 オーム社	
参考	図書			
関連	私日	電子回路,ディジタル回路 ,電気回路 ,電気回路 ,電子回路設計,		
大	プロジェグト演首 (等以件)			
		* * * * *	D試験と設計演習レポートで評価する。	
総合	評価	総合評価 = (2回の定期試験の平均	-	【総合評価】 点
		総合評価が60点以上を合格とする	0	