教科目名 電気回路 (Electric Circuits)

学科名・学年 : 制御情報工学科 4年 (教育プログラム 第1学年 科目) 単 位 数 な ど : 必修 2 単位 (前期 1 コマ,後期 1 コマ,学習保証時間 45 時間)

担 当 教 員 : 金田 嗣教

授業の概要

3年で学習した直流回路の続きとして交流回路を学ぶ.

達成目標と評価方法

大分高専目標(B2) , JABEE 目標(d1)(g)

- (1)交流回路の基礎を理解する.(定期試験と課題)
- (2)三相交流と単相の差を理解し,三相特有の定理,回路の計算法,4端子網を理解する.(定期試験と課題)
- (3)Mを含む回路の等価回路,ベクトルの軌跡の作図方法を理解する.(定期試験と課題)

(4)ひずみ波特有の実効値,電力などの定義を理解する.過渡現象を理解する.(定期試験と課題)				
回		授 業 項 目	内 容	理解度の自己点検
1	1 章正弦	弦波回路,復習問題	交流回路の基礎を理解する.	【理解の度合い】
		はベクトルで表せる,問題	交流ベクトルを理解する.	
2		交流回路	基本交流回路について理解する.	
3		RCの直列回路	RL,RCの直列回路を理解する.	
4	問題			
5		でである。	交流の電力について理解する.	
6		法による交流回路の計算	交流の記号法を理解する.	
7	直列共初	表回路,並列共振回路 	共振回路を理解する.	
8	前期中間			【試験の点数】 点
9		引試験の解答と解説		【理解の度合い】
10		トッフの法則と電力,問題	キルヒホッフの法則と電力を	
11]交流回路,三相起電力,星型 12	三相交流の起電力 ,三相電力を理解でき	
12		泉,三相電力,問題, 3電流・乗れまわせ、ラブナン	│ る . │ 重ねあわせ , テブナンの定理 , ブッジの	
12		目電流,重ねあわせ,テブナン, ,交流ブリッジ,星型と三角結	重ねめわせ,ナフナフの定理,フッシの 考えが理解できる.	
13		, 文派フリック, 年至乙二用紀 奐, 電力最大条件と整合回路,	考えが理解できる:	
14		とABCDの求め方,問題	電力取入示け、空口回路の意味を理解できる. きる.4端子網の意味を理解できる.	
' '		国国路の取り扱い ,三相の三角 ,	三相回路の取り扱いがわかる . 結線の換	
		泉の換算等価単相回路,回転磁	算ができる。	
	界,問題		回転磁界の意味がわかる	
15	前期期ヲ			【試験の点数】 点
	前期期末	<u> 試験の解答と解説</u>		
16		インダクタンスを含む回路、	Mの扱い方を理解できる.	【理解の度合い】
17		N方 , 合成インダクタンス ,	合成インダクタンス,結合回路,ブリッ	
18		各,ブリッジ回路,結合回路の	ジ回路 ,結合回路の等価回路を理解できる	
19	等価回路		ベクトリの動物 概念 逆図形の字理を	
20 21		クトルの軌跡 , 概念 , 逆図形の R L 直列回路 ,	ベクトルの軌跡,概念,逆図形の定理を 理解し回路例を解ける.	
22	│足垤,「 │問題	(1) 直列四路,	连軒し凹凸的を解ける。	
23	後期中間	 引計		
24		引試験の解答と解説		【理解の度合い】
25		ずみ波交流 ,ひずみ波交流はフ	1 1 章ひずみ波交流の意味がわかる.	
		吸数,高調波,実効値,回路の	フーリエ級数での解析を理解できる.	
26	計算,ひ	ずみ率,電力,等価正弦波	高調波 ,実効値 ,回路の計算 ,ひずみ率 ,	
27		3調波と三角星型結線,12 章		
		東,過渡現象とは,RL 直列回路,	R C , R L 直列交流回路の過渡現象を理	
28		回路 RL 直列交流回路の過渡現	解できる.	
29	象,問題			
30	後期期ヲ			 【試験の点数】 点
		1995	 	
定地				【総合達成度】
履修上の注意 質問はいつでも受ける.				▲沁口 建ル皮 ▲
教科書 入門交流回路,田中謙一郎,東京電機大学出版局				
参考図書 電気基礎上下,宇都宮敏男他,コロナ社,電気回路(1)阿部他,(2)早川他				
関連科目 電気回路,機能材料工学,パワーエレクトロニクス				
達成目標の(1)~(4)について4回の試験と課題で評価する 総合評価=(4回の定期試験の平均)×0.8+(課題点)×0.2 総合評価が60点以上を合格とする.			平均)×0.8+(課題点) ×0.2	【総合評価】
L				