教科目名 応用数学Ⅱ (Applied Mathematics Ⅱ)

学科名·学年 : 電気電子工学科 4年

単位数など: 必履修 2単位 (前期1コマ,後期1コマ,学習保証時間45時間)

担 当 教 員 : 牧野伸義

授業の概要

3 年まで学んだ数学を基礎にして、工学でよく使用される複素関数論、ラプラス変換、フーリエ級数およびフーリエ変換を学ぶ。応用数学 II では、これらの理論を理解するとともに、工学でよく使われる微分方程式、偏微分方程式、積分などを取り上げその解法を身につける。 さらに工学に使われる偏微分方程式等の物理的意味を学ぶ。

達成目標と評価方法

大分高専目標(B1), JABEE 目標(c)(g)

- (1) ラプラス変換を理解し、利用して微分方程式や偏微分方程式を解くことができる. (定期試験)
- (2) フーリエ解析の基礎が理解でき、偏微分方程式に適用することができる. (定期試験)
- (3) 複素関数論の基礎を理解し、微分方程式や積分に適用することができる.(定期試験)
- (4) 演習問題を通して理解を深めるとともに、継続的な学習ができるようにする. (課題)

回 (4) 供旨	自问起	<u>を通しし</u> 授	生件で	項	<u>すとともに,</u> 目	継続的な学習ができるようにする. (課題) 内 容	理解度の自己点検
ш	1.	ラプラン			Д		【理解の度合い】
1, 2		ラプラン			し毎	○ / / / / / 及換の基本的な概念を理解しまる。	【理解の及句(*)
					と変換表	さる. ○逆ラプラス変換ができる.	
3					こ変換衣 ラス変換	· ·	
4				_		○ラプラス変換を利用して, 微分方程式や	
5		ラプラ				積分方程式が解ける.	
6			数のフ	ブフス	変換と伝		
7	達関	数					
8		中間試験					【試験の点数】 点
9		中間試験				○基本的な関数のフーリエ級数展開ができ	【理解の度合い】
		フーリエ約			工変換	る.	
10		フーリン				○基本的な関数のフーリエ変換と逆変換	
11		フーリン				ができる.	
12, 13		フーリン				○応用として, 熱伝導方程式などの偏微分	
14	2.4	フーリン	工変換	の応用		方程式を解くことができる.	
ļ							
15		期末試験					【試験の点数】 点
		期末試験		答と解記	兑		
	3.	正則関	数			○複素関数の基本的な性質を説明できる.	【理解の度合い】
16		複素数				○正則関数の性質を理解する.	
17		極形式				○正則関数の性質を利用して,ラプラス方	
18, 19	3. 3	複素関	数			程式の解としての調和関数を理解する.	
20, 21	3.4	正則関	数			○正則関数の写像の性質が説明できる.	
22	3. 5	正則関	数の写	像と逆	関数		
23	後期	中間試験	È				【試験の点数】 点
24	後期	中間試験	の解答	答と解詞	兑		【理解の度合い】
	4. 剂	复素積分				○複素積分に基本的な概念を理解する.	
	4. 1	複素積	分の基	礎		○コーシーの積分定理とコーシーの積分	
25	4.2	コーシ	ーの積	分定理		表示を理解し複素積分の計算ができる.	
26	4.3	コーシ	ーの積	分表示		○複素積分の展開法,留数定理を理解し,	
27	4. 4	数列と	級数			実数関数の定積分を解くことができる.	
28	4. 5	複素関	数の展	開			
29	2.6	留数定理	理				
30	後期	期末試験	 }				【試験の点数】 点
	後期	期末試験	の解答	<u> </u>			
屋板Lの	注	応用数学Ⅱでは工学でよく使われる数学を学ぶので,常日頃から十分予習,					【総合達成度】
履修上の	復習して	復習しておくこと					
教 科	書	田河生長ら,「応用数学」, 大日本図書.					
4 + m =		表実、「キーポイント複素関数」岩波書店.					
参考区	当書					リエ解析」岩波書店.	
関連科	 	微分方程式,微分積分Ⅰ,微分積分Ⅱ,離散数学,プロジェクト演習Ⅰ					
101 Æ 11	. 1						
₩ ^ =	T. /3E	達成目標の(1)~(4)について,4回の定期試験と課題で評価する.総合評価= 前期中間試験20%+前期期末試験20%+後期中間試験20%+後期期末試験20%+					
総合評	+ 1 四				. , ,		EAN A STATE
		硃趄息	∠∪%. 稅	3 台 評 位	□ 00 思以上	を合格とする.	【総合評価】 点