教科目名 構造力学Ⅱ (Structural Mechanics Ⅱ)

学科名·学年 : 土木工学科 4年

単位数など: 必履修 2単位 (前期1コマ,後期1コマ,学習保証時間45時間)

担 当 教 員 : 相川 明

授業の概要

3年生で学んだ「構造力学 I」を基礎にして、さらに「短柱と長柱」、「不静定構造物」、「仮想仕事の原理」、「エネルギー法」、「微分方程式による解法」について理解できるようにする。構造力学は、土木工学を学ぶ者に必須の基本科目である。練習問題を時間をかけて丁寧に解いてみることが重要である。

達成目標と評価方法

大分高専目標 (B2), JABEE 目標 (c) (d1④) (g)

- (1) 構造力学に関する基本的な考え方を理解し、関連する諸法則を適切に表現できる. (定期試験と課題)
- (2) 授業項目に関連した諸現象について知見を深めることができる. (定期試験と課題)
- (3) 応用問題に関して構造力学による定式化ができ、電卓を用いて求解できる. (定期試験と課題)
- (4) 単位の換算, 誤差と精度, および, 有効桁数に関して適切に理解できる. (定期試験と課題)

		, 以左	_{月/又,} 項	<u> </u>	別作数に関して適切に理解できる。(定期試験と課 内容	理解度の自己点検
	1. 柱			- н	○柱に圧縮力が作用したときの部材力を求め	【理解の度合い】
1		こ18 縮部材と柱	:		5.	
2	(2) 短		-		○柱には短い柱と長い柱があり、それぞれ解	
3		.ー 住では座屈	が生	じる	析法が異なる.	
4				考え方を用	○仕事およびエネルギーに基づいた構造物の	
5	-	いて構造物			解析法(エネルギー法)について学ぶ.この	
6	(1) 仕	事およびエ	ネル	ギーとは	方法で、力のつり合い条件だけでは解析でき	
	(2) 仮	想変位の原	見理を	用いて反力	ない不静定構造物も簡単に解くことができ	
7		を求める			る.	
8	前期中	明計驗				【試験の点数】 点
9		司武殿 間試験の解	2欠レ値	 深章		【理解の度合い】
				用いて変位	○仮想仕事の原理を用いて誘導されることを	()生/中*//又口* 】
10	を求め		1 ± C	///、《交压	理解できる.	
11, 12		。 反定理は便	利			
13				苛重のなす		
14		事とひずみ				
1.5	<u> </u>					【試験の点数】 点
15	前期期	木武映 末試験の解	かし			【試験の点数】 点
		な不静定			○力のつり合い条件式の数より多くある反力	【理解の度合い】
16		静定構造物		(14/1+1) D	または部材力は、余分な力として余力または	[建併の反日()]
17-19				理を利用し	不静定力と呼ぶ、この不静定力を求めるため	
11 13		定力を求め			の条件(変形の適合条件)について学ぶ。	
20-22				勿を解いて	○構造物の変位および断面力を求める定理に	
	みよう	0.11172		271	ついて学ぶ。	
23	後期中	間試験				【試験の点数】 点
24		間試験の解	答と角	 解説		【理解の度合い】
25, 26	(4) 微	分方程式に	こよる	不静定ばり	○微分方程式をたて、境界条件より解を求め	
	の解法				る.	
27, 28	(5) 温度差による不静定ばりの支			定ばりの支	○温度差による梁のたわみを求める.	
	点反力				○静定力学の考えを用いて不静定ばりを解	
29			トの定	理による連	く. 連続ばりの支点での左右のたわみ角が等	
	続ばり	の解析			しい関係より定理を導く.	
	<u> </u>					· · · · <u>·</u> · · · · · · · · · · · · · ·
30	後期期		t forton) .	· n = w		【試験の点数】 点
		末試験の解			 図を丁寧に描き,構造物に働く応力,たわみに	
屋 佐 L /			【総合達成度】			
履修上(
#h I-1		題を解いて、理論と実現象との関連性とを理解することが大切である。				
教科		平井一男・水田洋司・内谷保,「構造力学入門」,森北出版				
参考		成岡昌夫・遠田良喜,「土木構造力学」, 市ヶ谷出版 微分積分 I , 物理, 構造力学 I , 振動学, 鋼構造学				
関連						
				. , .	4回の定期試験と課題で評価する.	
4/3 A		総合評価は定期試験の成績(80%)および課題の提出(20%)により評価する. 総合評価=0.8×(定期試験の平均)+0.2×(課題)				
総合						▼ Δ0 Δ = T / T *
					点ずつ定期試験の成績より減点する.	【総合評価】 点
	13	マ 未 思 及 か	芯Ⅵ场	7日1440%でユ	上限に減点する.	