教科目名 表面工学 (surface engineering)

学科名・学年 :機械・環境システム工学専攻 2年

単 位 数 な ど : 選択 2 単位 (前期1コマ,学習保証時間22.5 時間)

担 当 教 官 : 清水 一道

授業の概要

機械材料は各種の表面損傷によってその精度,機能が低下して寿命が定まることが多く,ときにはこれが破壊の原因となることも多い.このような表面損傷は単にその機械要素の交換に止まらず,そのため全機能の停止や,思いがけない災害事故となってあらわれて,莫大な損失を招くおそれがある.機械設計に当って従来は機能と強度に重点がおかれていたが,さらに耐食,耐摩耗に注目した設計が必要となる.

到達目標

大分高専目標 (E1), JABEE 目標 (d2a)

- (1) 表面工学に関する専門用語を理解できる.
- (2) 表面工学に関する基本的な計算ができる.
- (3) 表面工学に関する科学的な見方や産業との関係が理解できる.

回		授 業 項 目	1	内	容	
1-3					表面エネルギー , 固体表面の構造 , 吸 ε化 , 吸着の機械的性質に及ぼす影響 , 影響	
4-7	2.接触。 2.1塑性 2.2摩擦 2.3境界	・弾性接触	:	塑性接触,弾性接触,摩擦	面温度上昇,摩擦,境界潤滑	
8 9	前期中間 前期中間	試験 試験の解答と解説		自身の理解力を分析し,わ	からなかった部分を理解する	
10-11	3. 摩耗 3.1 凝着 3.2 アプ 3.3 疲労 3.4 腐食	レシブ摩耗 摩耗		凝着摩耗の機構,荷重と速 果,アブレシブ摩耗の機構	きの影響,材料性質の影響,潤渭の効 ,疲労摩耗の機構	
12-14	 4 フレッティング・エロージョン 4.1 フレッティング疲労の機構 4.2 フレッティング疲労に及ぼす各種条件の影響 4.3 エロージョンの機構 4.4 エロージョンに及ぼす各種条件の影響 			フレッティング摩耗の機構,フレッティング摩耗に及ぼす各種条件の影響,すべり振幅,接触圧,振動数,環境,フレッティング疲労の被害,すべり振幅,接触圧,速度効果,応力種類,材料組合せ,液の物理的性質,液の化学的性質,材料の耐エロージョン性,油中におけるエロージョン		
14 15	前期期末 前期期末	試験 試験の解答と解説		自身の理解力を分析し,わ	からなかった部分を理解する	
履修上の注意 実力をつけるために適宜課題を出す.定期試験では期間中に学習した内容かを中心に過去に学んた 内容も含めて出題する.						
教	斗 書	遠藤 吉郎 , 表面工	学 金属の	表面損傷とその防止法 , 和	養賢堂	
参考	図 書 大谷 南海男,金属表面工学,日刊工業新聞社					
関連	科目塑性加工学,材料強度学					
評 価	評価方法 達成目標(1)~(3)について2回の試験および課題で評価する. 総合評価=0.8×(2回の定期試験の算術平均)+0.2×(課題点) 総合評価が60点以上の受講者を合格とする.					