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   In this paper, we treat the behaviors of 1-dimensional finite cellular automata with a triplet local 
transition rule 58 having the fixed boundary condition 0-1. The behaviors of CA-58(n) were observed by 
computer experiments, and some formulae on the limit cycle and the transient length were found out. The 
purpose of this paper is to give theoretical proofs to above formulae. 
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1.  INTRODUCTION 
 

Cellular automata were initially introduced by J. 
von Neumann as theoretical models to demonstrate 
a system capable of self-reproducing organisms and 
universal computation in 1950s1). From 1980s 
downward, cellular automata have been realized 
again as a theoretical model of complex system by 
S.Wolfram and the other physicists. And many 
researchers have investigated and applied them. 
Cellular automata have very simple structure. While 
cellular automata obey simple transition rules, their 
behaviors are very complicated. The complication is 
caused by interaction between cells and is similar to 
behaviors of complex systems as fractal and chaotic 
phenomena. The importance of cellular automata 
seems to increase in the fields of mathematics, 
physics, biology, computer science, economics and 
so on. 
   Various cellular automata have been analyzed 
concerning one dimensional and two dimensional 
cellular automata, cellular automata with a cyclic 
cell array or a linear cell array and so on. Wolfram 
classified 1-dimensional cellular automata into four 
complex classes according to patterns generated by 
the synchronous dynamics, a homogeneous state, a 
set of separated simple stable or periodic structures, 
a chaotic pattern and complex localized structures 
which are sometimes long-lived2),3). 
   Investigating behaviors of cellular automata, we 
think that the transient length and the period length 
of limit cycle are important concepts. Cellular 
automata having limit cycles of period length 1 or 2 
were investigated by Inokuchi et al.4). So first, we 

aimed at cellular automata having limit cycles of 
period length 35),6),7),8),9),10),11). By computer 
experiments, we observed that there were seven 
cellular automata having limit cycles of period 
length 3 except cellular automata with threshold 
rules, 24, 27, 46, 57, 58, 130 and 152. And we 
investigated their transient length and period length 
of limit cycle. Secondly, we investigated  cellular 
automata with threshold rules. There are 38 
threshold rules except for symmetric, reverse and 
symmetric reverse rules, 0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 
12, 13, 14, 15, 19, 23, 32, 34, 35, 42, 43, 50, 51, 76, 
77, 128, 136, 138, 140, 142, 160, 162, 168, 170, 
178, 200, 204 and 232.  And we reproved that  
their period lengths of limit cycles are 4 or less and 
we proved that their transient lengths are 3 ×  
(cell-size)-4 or less12),13). 
 
2. PRELIMINARIES 
 
   In this section, we define 1-dimensional finite 
cellular automata and introduce notations used in 
this paper. 

Cellular automata treated in this paper have 
linearly ordered and finite number cells bearing with 
states 0 or 1. The next state of any cell depends on 
the states of the left cell, the cell itself and the right 
cell. In this section, we will formally define cellular 
automata CA-R(n) with rule number R of triplet 
local transition rule f and n cell array. 

Let Q be a state set {0, 1} and n a positive 
integer. The complement of a state a∈Q will be 
denoted by a-, that is a-=1-a. The n-th cartesian 
product of Q is denoted Qn in other words, Qn is the 
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set of all n-tuples consisting of 0 and 1. For 
example,  

Q3={000, 001, 010, 011, 100, 101,110, 111}.  
 

DEFINITION 2.1 
The triplet local transition rule is a function f : 
Q3→Q, and the rule number R of f is defined by 
       )(2

,,

24 abcfR
Qcba

cba∑
∈

++= . 

 
Usually the triplet local transition rule of rule 
number R is denoted by rule R for short. 
 
DEFINITION 2.2 
Let I={1, 2, ･･･ , n} be a set of cells. We call 
n-dimensional vector space Qn a configuration 
space. And a configuration is a vector x=(x1, 
x2, ･･･, xn) ∈  Qn.  
 
The positive integer n is called cell-size. Usually a 
vector (x1, x2, ･･･, xn) denotes x1 x2･･･xn for short. 
 
DEFINITION 2.3 
The global transition function δ  is defined as 
follows; 
δ (x1 x2･･･xn)=(f(α x1 x2)f(x1 x2 x3)･･･f(xn-1 xnβ ))  

where f is rule R and α ,β ∈  Q. 
 
We call a pair (α ,β ) a boundary. We say that the 
boundary condition is cyclic if and only if α = xn 
and β  = x1, and the boundary condition is fixed if 
and only if α  and β  are fixed. We say that the 
boundary condition is a-b if α =a and β =b. 

)(nRCA βα−−  denotes an one-dimensional cellular 
automata such that n cells exist and its transition 
rule R and its boundary condition is α - β .  
 
DEFINITION 2.4 
Let x be a configuration of )(nRCA βα−− . The 
configuration x is on a limit cycle of period length T 
if there exists a positive integer s such that δ s(x)=x, 
and T=min{s≥ 1|δ s(x)=x}. And the configurations 
x(1), x(2), ･･･, x(T-1) form a limit cycle of period 
length T if  x(i+1)=δ (x(i)) and x(T)=x(1), and x(i) 
is on a limit cycle of period length T where 
1≤ i≤T-1. 
 
A limit cycle of period length T is denoted by a 
T-cycle, in particular, a limit cycle of period length 1 

is denoted by a fixed point. And a number of a limit 
cycle of period length T is denoted by )(nTγ . 
 
DEFINITION 2.5 
h(x) is defined as follows ; 
h(x)=min{s≥ 0|δ s(x) is on a limit cycle}. 
 
Then the transient length H(n) of )(nRCA βα−−  is 

defined as H(n)=max{h(x)|x∈Qn}. 
 
DEFINITION 2.6 
The symmetric transition rule f # : Q3→Q of a local 
transition rule f is defined as follows; 

f # (abc)=f (cba) 
for all triples abc ∈Q3. 
 
DEFINITION 2.7 
The reverse transition rule f ° : Q3→Q of a local 
transition rule f is defined as follows ; 

f ° (abc)=[f (a-b-c-)]-=1-f (1-a, 1-b, 1-c) 
for all triples abc ∈Q3. 
 
Let rule R ° and rule R# be the reverse and symmetric 
rule of rule R respectively. It is trivial that f ##=f and 
R#=R+56(r3-r6)+14(r1-r4) and f ° ° =f,  f # ° =f ° # 

and R ° =255-(128 r0+64r1+32 r2+16 r3+8 r4+4 r5+2 
r6+ r7) where r4a+2b+c=f(abc) for all triples abc ∈Q3. 
Then, we can identify )(nRCA −−−

°− βα  and 

)(# nRCA αβ −−  with )(nRCA βα−− . So,  

)(nRCA βα−− , )(nRCA −−−
°− βα , )(# nRCA αβ−−  

and )(# nRCA −−−
°− αβ  can be identified with each 

other. 
 
Considering the reverse rule, the symmetric rule and 
the symmetric reverse rule, 256 triplet transition 
rules can be classified into nonequivalent 88 groups. 
 
In addition to above definitions, the notations in this 
paper are as follows;  
・ ak=aa･･･a (a=0 or 1). 
    k-times 
Let A be a subsequence.  
・ Ak=AA･･･A. 
        k-times 
・ ∗

lA)[  : sequence composed of l bits taken from the 
left edge when some A's are arranged. 

・ ∗
lA](  : sequence composed of l bits taken from the 

right edge when some A's are arranged. 



大分工業高等専門学校紀要 第 43 号 (平成 18 年 11 月) 

- 43 - 

・ ∗  : an arbitrary bit. 
・ The state of i-th cell of a configuration x is 

denoted by xi. 
・ x0 and xn+1 mean the left and right boundary of x 

respectively. That is, in )(nRCA βα−−  x0=α  

and xn+1=β . 
 
3. BEHAVIORS OF CA‐580-1(n) 
 

A finite cellular automaton CA-580-1(n) treated in 
this section has the following triplet local  
transition rule f by the definition of the rule number: 
111 110 101 100 011 010 001 000
0 0 1 1 1 0 1 0 

because 58=25+24+23+20. 
 
LEMMA 3.1 
For any configuration x of CA-580-1(n), δ (x) does 
not contain the subsequence 1111. 
 
Proof. 
We set δ (x)=y and yiyi+1yi+2yi+3=1111 (1≤ i≤ n-3). 
Then, we have xi-1xixi+1=001, 011, 100 or 101 for 
yi=1.  
(i) In the case xi-1xixi+1=001 or 101 
   For yi+1=1, we have xi+2=1. But this contradicts 

yi+2=1 as f(11∗ )=0. 
(ii) In the case xi-1xixi+1=011 
   This case contradicts yi+1=1 as f(11∗ )=0. 
(iii) In the case xi-1xixi+1=100 
   For yi+1yi+2 =11, we have xi+2xi+3=11. But this 

contradicts yi+3=1 as f(11∗ )=0.            □ 
 
COROLLARY 3.2 
For any configuration x of CA-580-1(n), we set 
δ (x)=y. Then, we have y1y2y3≠111. 
 
LEMMA 3.3 
For any configuration x of CA-580-1(n), we set 

)(xkδ =y where k≥ 2. Then, we have yn-2yn-1yn≠111. 
 
Proof. 
We set yn-2yn-1yn=111 and δ k-1(x)=z. Then, we have 
zn-3zn-2zn-1zn=1111. But this contradicts lemma 3.1 as 
k-1≥ 1.                                  □ 
 
LEMMA 3.4 
For any configuration x of CA-580-1(n), )(xkδ  
does not contain the subsequence 000 where k≥ n-2. 
 
Proof. 

We set )(xkδ =y, yiyi+1yi+2=000 (1 ≤ i ≤ n-2) and 

)(1 xk−δ =z. Then, we have zi+1zi+2zi+3=000, 010, 110 
or 111 for yi+2=0.  
(i) In the case zi+1zi+2zi+3=010 
   This case contradicts yi+1=0 as f(∗ 01)=1. 
(ii) In the case zi+1zi+2zi+3=110 or 111 
   For yi+1=0, we have zi=1. But this contradicts 

lemma 3.1 as k-1≥ n-3. 
(iii) In the case zi+1zi+2zi+3=000 
   Only this case is suitable by zi-1zi=00. Then, we 

have zi-1zizi+1zi+2zi+3=00000.             
(iii-a)  In the case i-1>n-(i+2) i.e. 2i>n-1 
   We set δ k-{n-(i+2)}(x)=w. Then, we have wn-2wn-1 

wn=000. As k-{n-(i+2)}>k-(i-1) ≥ n-2-(n-3)=1, 
we have k-{n-(i+2)} ≥ 2. Therefore, this case 
contradicts lemma 3.3. 

(iii-b)  In the case i-1≤ n-(i+2) i.e. 2i≤ n-1 
   Considering x1x2x3=000 for y1y2y3=000 where 

δ (x)=y, we have δ k-{n-(i+2)}(x)=0n and 
k-{n-(i+2)}≥m-2-(m-3)=1. But no predecessor 
of 0n exists. Therefore, this case is irrelevant. □ 

 
LEMMA 3.5 
For any configuration x of CA-580-1(n), )(xkδ  
does not contain the subsequence 111 where 
k≥ 2n-5. 
 
Proof. 
We set )(xkδ =y, yiyi+1yi+2=111 (1 ≤ i ≤ n-2), 

)(1 xk−δ =z and )(2 xk−δ =w. Then, we have zi-1zizi+1 

=001, 011, 100 or 101 for yi=1. 
(i) In the case zi-1zizi+1=001 or 101 
   For yi+1=0, we have zi+2=1. But this contradicts 

yi+2=1 as f(11∗ )=0. 
(ii) In the case zi-1zizi+1=011 
   This case contradicts yi+1=1 as f(11∗ )=0. 
(iii) In the case zi-1zizi+1=100 
   For yi+1yi+2 =11, we have zi+2zi+3=11 i.e. zi-1zi 

zi+1zi+2zi+3=10011. Then, we have wi-2wi-1wi=001, 
011, 100 or 101 for zi-1=1. 

(iii-a)  In the case wi-2wi-1wi=001 or 101 
   For zi=0, we have wi+1=0. But this contradicts 

zi+1=0 as f(10∗ )=1. 
(iii-b)  In the case wi-2wi-1wi=100 
   For zi=0, we have wi+1=0. But this contradicts 

lemma 3.4 as k-2≥ 2n-7. 
(iii-c)  In the case wi-2wi-1wi=011 
   For zi+1 zi+2=01, we have wi+1wi+2=10 considering 

f(10∗ )=0. For zi+3=1, we have wi+3wi+4=01 or 11. 
Therefore, we have wi-2wi-1･･･wi+4=0111001 or 
0111011. Repeating this operation, we set 
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δ k-2(i-1)(x)=u. Then, we have u1u2u3=111. But 
this contradicts corollary 3.2 because of k-2(i-1) 
≥ 2n-5-2i+2≥ 1.                        □ 

 
LEMMA 3.6 
For any configuration x of CA-580-1(n), )(xkδ  
does not contain the subsequence 00 where k≥ 2n-4. 
 
Proof. 
We set )(xkδ =y, yiyi+1=00 (1 ≤ i ≤ n-1) and 

)(1 xk−δ =z. Considering lemma 3.4 and lemma 3.5, 
we have zi-1zizi+1=010 or 110 for yi=0 as k-1≥ 2n-5. 
But this contradicts yi+1=0 as f(10∗ )=1.        □ 
 
LEMMA 3.7 
For any configuration x of CA-580-1(n), )(xkδ  
does not contain the subsequence 1010 where 
k≥ 2n-6. 
 
Proof. 
We set )(xkδ =y, yiyi+1yi+2yi+3=1010 (1 ≤ i ≤ n-3) 
and )(1 xk−δ =z. For yi=1, we have zi-1zizi+1=001, 
011, 100 or 101. 
(i) In the case zi-1zizi+1=001 or 101 
   For yi+1=1, we have zi+2=0. For yi+2 yi+3=10, we 

have zi+3zi+4=10 considering lemma 3.4. Thus, 
we have zi+1zi+2zi+3zi+4=1010. 

(ii) In the case zi-1zizi+1=100 
   For yi+1=0, we have zi+2=0. But this contradicts 

lemma 3.4 as k-1≥ 2n-7. 
(iii) In the case zi-1zizi+1=011 
   For yi+1yi+2=01, we have zi+2zi+3=01 considering 

f(11∗ )=0 and lemma 3.4. For yi+3=0, we have 
zi+4=0. Therefore we have zi+1zi+2zi+3zi+4=1010. 
Repeating the above, we set δ k-{n-(i+3)}(x)=w. 
Then, we have wn-3wn-2wn-1wn=1010 where 
k-{n-(i+3)}≥ 2n-6-(n-4)≥ n-2. Moreover we set 
δ k-{n-(i+3)}-1(x)=u. For wn-1wn=10, we have 
un-2un-1un=011. But this contradicts wn-2=0 as 
f(∗ 01)=1.                             □ 

 
COROLLARY 3.8 
For any configuration x of CA-580-1(n), )(xkδ  
does not contain the subsequence 0101 where 
k≥ 2n-5. 
 
Proof. 
We set )(xkδ =y, yiyi+1yi+2yi+3=0101 (1 ≤ i ≤ n-3) 
and )(1 xk−δ =z. 

(i) In the case i≥ 2  
   We have zizi+1zi+2zi+3=1010 considering lemma 

3.4 and f(11∗ )=0. But this contradicts lemma 
3.7 as k-1≥ 2n-6. 

(ii) In the case i=1 
   We set z1z2z3z4=0010 and )(2 xk−δ =w. Then, we 

have w1w2w3w4 w5=00010. But this contradicts 
lemma 3.4 as k-2≥ 2n-7.                 □ 

 
LEMMA 3.9 
For any configuration x of CA-580-1(n), we set 

)(xkδ =y where k≥ 2n-4. Then, the followings hold; 
1.  y= ∗

n)110[ , ∗
n)101[  or ∗

n)011[ . 
2.  Above three configurations make a limit cycle. 
 
Proof. 
Considering lemma 3.4, lemma 3.5, lemma 3.6 
lemma 3.7 and corollary 3.8, we can construct the 
configuration y as follows ; 
・ 011011011･･･ = ∗

n)011[  

・ 101101101･･･ = ∗
n)101[  

・ 110110110･･･ = ∗
n)110[  

It follows that  
δ ( ∗

n)011[ ) = ∗
n)110[ , δ ( ∗

n)110[ ) = ∗
n)101[  and 

δ ( ∗
n)101[ ) = ∗

n)011[ by direct calculations.  

Especially, we set x= ∗
n)1110[ . Then, we can show 

that )(2 xiδ = ∗
i]110( ∗

−in)1110[  by induction on i. 

Let i=n-3, then we have )()3(2 xn−δ = 111]110( 2
∗
−n , 

)(52 xn−δ = 100]101( 3
∗
−n  and  

)(42 xn−δ = 011]011( 3
∗
−n = ∗

n]011(  

             (011)l= ∗
n)011[   n=3l 

=   1(011)l= ∗
n)101[   n=3l+1 

           11(011)l= ∗
n)110[   n=3l+2. 

And the last configurations are configurations on a 
limit cycle by lemma 3.9.                    □ 
 
   Finally, we have the following theorem about 
CA-580-1(n). 
 
THEOREM 3.10 
CA-580-1(n) has a unique limit cycle of period length 
3 and its transient length is 2n-4. 
 
4. CONCLUSIONS 
 
   As conclusive remarks, we could show that 
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CA-580-1(n) has a unique limit cycle of period length 
3 and its transient length is 2n-4. There are some 
future tasks. The first is to investigate CA-58 (n) 
under the other fixed boundary conditions 0-0, 1-0 
and 1-1. The second is to investigate 1-dimensional 
cellular automata with threshold rules under free 
boundary conditions14). And the last is to investigate 
1-dimensional cellular automata with reversible 
transition functions considered as a special type of 
quantum cellular automata15) and 2-dimensional 
cellular automata with reversible linear transition 
functions using von Neumann neighborhood. 
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